Properties and Biomedical Applications of Carbon Nanotubes
DOI:
https://doi.org/10.5281.inno202514Keywords:
Biomedical Application, Biosensors, Cancer Therapy, Carbon Nanotubes, Drug DeliveryAbstract
Carbon nanotubes possess unique chemical, physical, and biological properties that make them highly suitable for a variety of applications, particularly in industrial and biomedical fields. They exhibit excellent electrical and thermal conductivity, high biocompatibility, flexibility, corrosion resistance, nanometer-scale dimensions, and a large surface area that can be functionalized and modified as needed. This study examines the primary areas and applications of carbon nanotubes in biomedical contexts, drawing on scholarly research published within the last ten years. It discusses the structural characteristics and types of carbon nanotubes, along with their synthesis in tissue engineering and bioengineering, drug delivery systems, biocompatibility, cancer therapy, biosensing, and diagnostic applications. The remarkable properties of carbon nanotubes position them as a transformative force in the biomedical field. Their exceptional thermal conductivity, coupled with high biocompatibility and flexibility, makes them invaluable for various applications, from tissue engineering to advanced drug delivery systems. The nanometer-scale dimensions and extensive surface area enable targeted functionalization, enhancing their effectiveness in cancer therapy and biosensing. As researchers continue to explore innovative synthesis methods, the potential for carbon nanotubes to revolutionize diagnostics and therapeutic strategies becomes increasingly evident. Embracing these unique materials could lead to significant advancements in healthcare, ultimately improving patient outcomes and paving the way for a new era of medical innovation.
References
Ali, A., Koloor, S. S. R., Alshehri, A. H., & Arockiarajan, A. (2023). Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures–A review. Journal of Materials Research and Technology, 24, 6495-6521. https://doi.org/10.1016/j.jmrt.2023.04.072
Alosime, E. M. (2023). A review on surface functionalization of carbon nanotubes: methods and applications. Discover Nano. 18(1), 12. https://doi.org/10.1186/s11671-023-03789-6. https://doi.org/10.1186/s11671-023-03789-6
Aslan, S., Loebick, C. Z., Kang, S., Elimelech, M., Pfefferle, L. D., & Van Tassel, P. R. (2010). Antimicrobial biomaterials based on carbon nanotubes dispersed in poly (lactic-co-glycolic acid). Nanoscale. 2(9), 1789-1794. https://doi.org/10.1039/C0NR00329H
Chaudhari, A. A., Joshi, S., Vig, K., Sahu, R., Dixit, S., Baganizi, R., ... & Pillai, S. (2019). A three-dimensional human skin model to evaluate the inhibition of Staphylococcus aureus by antimicrobial peptide-functionalized silver carbon nanotubes. Journal of Biomaterials Applications. 33(7), 924-934. https://doi.org/10.1177/0885328218814984
Chen, Z., Zhang, X., Yang, R., Zhu, Z., Chen, Y., & Tan, W. (2011). Single-walled carbon nanotubes as optical materials for biosensing. Nanoscale. 3, 1949–1956. https://doi.org/10.1039/C0NR01014F
Chen, H., Wang, B., Gao, D., Guan, M., Zheng, L., Ouyang, H., Chai, Z., Zhao, Y., & Feng, W. (2013). Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small. 9(16), 2735–2746. https://doi.org/10.1002/smll.201202792
Dubey, R., Dutta, D., Sarkar, A., & Chattopadhyay, P. (2021). Functionalized carbon nanotubes: synthesis, properties, and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Advances. 3(20), 5722-5744. https://doi.org/10.1039/D1NA00293G
Ferrier, D. C., & Honeychurch, K. C. (2021). Carbon nanotube (CNT)-based biosensors. Biosensors. 11(12), 486. https://doi.org/10.3390/bios11120486
Ganesh, K., & Massagué, J. (2021). Targeting metastatic cancer. Nature Medicine. 27(1), 34-44. https://doi.org/10.1038/s41591-020-01195-4
Harrison, B. S., & Atala, A. (2007). Carbon nanotube applications for tissue engineering. Biomaterials. 28(2), 344-353. https://doi.org/10.1016/j.biomaterials.2006.07.044
He H, Pham-Huy LA, Dramou P, Xiao, D., Zou, P., & Pham-Huy, C. (2013). Carbon nanotubes: applications in pharmacy and medicine. Biomed Research International. 578290. doi: 10.1155/2013/578290.
Helmus, M. N., Gibbons, D. F., & Cebon D. (2008) Biocompatibility: Meeting a key functional requirement of next-generation medical devices. Toxicologic Pathology. 36(1), 70–80. https://doi.org/10.1177/0192623307310
Huang, B. (2020). Carbon nanotubes and their polymeric composites: the applications in tissue engineering. Biomanufacturing Reviews. 5(3), 1-26. https://doi.org/10.1007/s40898-020-00009-x
Huang, L., Gu, M., Wang, Z., Tang, T. W., Zhu, Z., Yuan, Y., Wang, D., Shen, C., Thang, B. Z., & Ye, R. (2021). Highly efficient and rapid inactivation of coronavirus on non‐metal hydrophobic laser‐induced graphene in mild conditions. Advanced Functional Materials. 31(24), 2101195. https://doi.org/10.1002/adfm.202101195
Huzum, B., Puha, B., Necoara, R. M., Gheorghevici, S., Puha, G., Filip, A., Sirbu, P. D., & Alexa, O. (2021). Biocompatibility assessment of biomaterials used in orthopedic devices: An overview. Experimental and Therapeutic Medicine. 22(5), 1315. https://doi.org/10.3892/etm.2021.10750
Jain, N., & Tiwari, S. (2021). Biomedical application of carbon nanotubes (CNTs) in vulnerable parts of the body and its toxicity study: A state-of-the-art-review. Materials Today: Proceedings. 46, 7608-7617. https://doi.org/10.1016/j.matpr.2021.01.895
Kang, S., Pinault, M., Pfefferle, L. D., & Elimelech, M. (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 23(17), 8670-8673. https://doi.org/10.1021/la701067r
Kang, S., Herzberg, M., Rodrigues, D. F., & Elimelech, M. (2008a). Antibacterial effects of carbon nanotubes: size does matter!. Langmuir, 24(13), 6409-6413. https://doi.org/10.1021/la800951v
Kang, S., Mauter, M. S., & Elimelech, M. (2008b). Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environmental Science & Technology, 42(19), 7528-7534. https://doi.org/10.1021/es8010173
Klochkov, S. G., Neganova, M.E., Nikolenko, V.N., Chen, K., Somasundaram, S.G., Kirkland, C.E., & Aliev, G. (2021). Implications of nanotechnology for the treatment of cancer: Recent advances. Seminars in Cancer Biology. 69:190-199. 31446004. https://doi.org/10.1016/j.semcancer.2019.08.028
Kumar, S. S., Lakshmi, A., Murali, A., M, H., RC, K. P., Gangopadhyay, M., & Saritha, A. (2023). Carbon Based Antibacterial and Antiviral Materials. In Antibacterial and Antiviral Functional Materials, 1: 327-361. American Chemical Society.
Liu, S., Wei, L., Hao, L., Fang, N., Chang, M.W., Xu, R., Yang, Y., & Chen, Y. (2009). Sharper and faster ‘‘nano darts’’ kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano. 3(12), 3891–3902. https://doi.org/10.1021/nn901252r
Maksimova, Y., Zorina, A., & Nesterova, L. (2023). Oxidative stress response and E. coli biofilm formation under the effect of pristine and modified carbon nanotubes. Microorganisms. 11(5), 1221. https://doi.org/10.3390/microorganisms11051221
Murjani, B. O., Kadu, P. S., Bansod, M., Vaidya, S. S., & Yadav, M. D. (2022). Carbon nanotubes in biomedical applications: current status, promises, and challenges. Carbon Letters. 32(5), 1207-1226. https://doi.org/10.1007/s42823-022-00364-4
Nader, K., Shetta, A., Saber, S., & Mamdouh, W. (2023). The potential of carbon-based nanomaterials in hepatitis C virus treatment: a review of carbon nanotubes, dendrimers, and fullerenes. Discover Nano. 18(1), 116. https://doi.org/10.1186/s11671-023-03895-5
Naief, M. F., Mohammed, S. N., & Mohammed, A. M. (2024). Carbon nanotubes: A review on synthesis and drug delivery for cancer treatment. Inorganic Chemistry Communications. 159, 111694. https://doi.org/10.1016/j.inoche.2023.111694
Packhaeuser, C. B., Schnieders, J., Oster, C. G., & Kissel, T. (2004) In situ forming parenteral drug delivery systems: an overview. European Journal of Pharmaceutics and Biopharmaceutics. 58(2):445–455. https://doi.org/10.1016/j.ejpb.2004.03.003
Patra, J. K., Das, G., Fraceto, L. F., et al. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology. 16, 71. https://doi.org/10.1186/s12951-018-0392-8
Prajapati, S. K., Malaiya, A., Kesharwani, P., Soni, D., & Jain, A. (2022). Biomedical applications and toxicities of carbon nanotubes. Drug and Chemical Toxicology. 45(1), 435-450. https://doi.org/10.1080/01480545.2019.1709492
Patel, K. D., Singh, R. K., & Kim, H. W. (2019). Carbon-based nanomaterials as an emerging platform for theranostics. Materials Horizons. 6(3), 434–469. https://doi.org/10.1039/C8MH00966J
Riley, P. R., & Narayan, R. J. (2021). Recent advances in carbon nanomaterials for biomedical applications: A review. Current Opinion in Biomedical Engineering, 17, 100262. https://doi.org/10.1016/j.cobme.2021.100262
Rodrigues, D.F., & Elimelech, M. (2010). Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Environmental Science & Technology. 44, 4583–4589. https://doi.org/10.1021/es1005785
Saleemi, M. A., Kong, Y. L., Yong, P. V. C., & Wong, E. H. (2021). An overview of antimicrobial properties of carbon nanotubes-based nanocomposites. Advanced Pharmaceutical Bulletin. 12(3), 449. https://doi.org/10.34172/apb.2022.049
Saleh Ahammad, A. J., Lee, J. J., & Rahman, M. A. (2009). Electrochemical sensors based on carbon nanotubes. Sensors. 9(4), 2289–2319. https://doi.org/10.3390/s90402289
Saliev, T. (2019). The advances in biomedical applications of carbon nanotubes. C, Journal of Carbon Research. 5(2), 29. https://doi.org/10.3390/c5020029
Serrano-Aroca, Á., Takayama, K., Tuñón-Molina, A., Seyran, M., Hassan, S. S., Pal Choudhury, P., ... & Brufsky, A. (2021). Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era. ACS Nano. 15(5), 8069-8086. https://doi.org/10.1021/acsnano.1c00629
Serrano‐Aroca, Á., Takayama, K., Mishra, Y. K., & de la Fuente‐Nunez, C. (2024). Carbon‐based nanomaterials for antiviral applications. Advanced Functional Materials. 34(38), 2402023. https://doi.org/10.1002/adfm.202402023
Sharma, M., Alessandro, P., Cheriyamundath, S., & Lopus, M. (2024). Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges. Journal of Drug Targeting. 32(3), 287-299. https://doi.org/10.1080/1061186X.2024.2309575
Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians. 68(1), 7-30. https://doi.org/10.3322/caac.21442
Singh, R., & Kumar, S. (2022). Cancer targeting and diagnosis: recent trends with carbon nanotubes. Nanomaterials. 12(13), 2283. https://doi.org/10.3390/nano12132283
Speranza, G. (2021). Carbon nanomaterials: Synthesis, functionalization and sensing applications. Nanomaterials, 11(4), 967. https://doi.org/10.3390/nano11040967.
Tiwari, S. K., Pandey, R., Wang, N., Kumar, V., Sunday, O. J., Bystrzejewski, M., ... & Mishra, Y. K. (2022). Progress in diamanes and diamanoids nanosystems for emerging technologies. Advanced Science. 9(11), 2105770. https://doi.org/10.1002/advs.202105770
Wang, J. (2005). Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis. 17, 7–14. https://doi.org/10.1002/elan.200403113
Zare, H., Ahmadi, S., Ghasemi, A., Ghanbari, M., Rabiee, N., Bagherzadeh, M., Karimi, M., Webster, T. J., Hamblin, M. R., Mostafavi, E. (2021). Carbon nanotubes: smart drug/gene delivery carriers. International Journal of Nanomedicine. 16, 1681–1706. https://doi.org/10.2147/IJN.S299448.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Özgür Topgider, Muhammed Said ÖZONAY

This work is licensed under a Creative Commons Attribution 4.0 International License.